Electron Tomography of Cryo-Immobilized Plant Tissue: A Novel Approach to Studying 3D Macromolecular Architecture of Mature Plant Cell Walls In Situ

نویسندگان

  • Purbasha Sarkar
  • Elena Bosneaga
  • Edgar G. Yap
  • Jyotirmoy Das
  • Wen-Ting Tsai
  • Angelo Cabal
  • Erica Neuhaus
  • Dolonchampa Maji
  • Shailabh Kumar
  • Michael Joo
  • Sergey Yakovlev
  • Roseann Csencsits
  • Zeyun Yu
  • Chandrajit Bajaj
  • Kenneth H. Downing
  • Manfred Auer
چکیده

Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼ 2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the primary cell walls of a mutant (cob-6) and wild type Arabidopsis hypocotyl parenchyma cells by RT-tomography of HPF-FS-resin sections, and detected a small but significant difference in spatial organization of cellulose microfibrils in the mutant walls.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular structural biology as revealed by cryo-electron tomography.

Understanding the function of cellular machines requires a thorough analysis of the structural elements that underline their function. Electron microscopy (EM) has been pivotal in providing information about cellular ultrastructure, as well as macromolecular organization. Biological materials can be physically fixed by vitrification and imaged with cryo-electron tomography (cryo-ET) in a close-...

متن کامل

Visualizing cellular processes at the molecular level by cryo-electron tomography.

The cellular landscape rapidly changes throughout the biological processes that transpire within a cell. For example, the cytoskeleton is remodeled within fractions of a second. Therefore, reliable structural analysis of the cell requires approaches that allow for instantaneous arrest of functional states of a given process while offering the best possible preservation of the delicate cellular ...

متن کامل

On a novel approach to 3D reconstruction in Cryo Electron Tomography: Progressive Stochastic Reconstruction Technique (PSRT)

Cryo Electron Tomography (cryoET) plays an essential role in Structural Biology, as it allows us to study structure of large macromolecular complexes in their close to native environment in-situ. It is often combined with high-resolution protocols such as Subtomogram Averaging (SA) to obtain structures of individual complexes from the tomograms. For successful and fully automatic application of...

متن کامل

Reconstructing adhesion structures in tissues by cryo-electron tomography of vitrified frozen sections.

Cryo-electron tomography enables three-dimensional insights into the macromolecular architecture of cells in a close-to-life state. However, it is limited to thin specimens, <1.0 μm in thickness, typically restricted to the peripheral areas of intact eukaryotic cells. Analysis of tissue ultrastructure, on the other hand, requires physical sectioning approaches, preferably cryo-sectioning, follo...

متن کامل

Template-free detection of macromolecular complexes in cryo electron tomograms

MOTIVATION Cryo electron tomography (CryoET) produces 3D density maps of biological specimen in its near native states. Applied to small cells, cryoET produces 3D snapshots of the cellular distributions of large complexes. However, retrieving this information is non-trivial due to the low resolution and low signal-to-noise ratio in tomograms. Current pattern recognition methods identify complex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014